Skip to main content
Video s3

Machine Learning for DFM

    Details
    Presenter(s)
    Bei Yu Headshot
    Display Name
    Bei Yu
    Affiliation
    Affiliation
    Chinese University of Hong Kong
    Country
    Abstract

    The continued scaling of integrated circuit technologies, along with the increased design complexity, has exacerbated the challenges associated with manufacturability and yield. In today’s semiconductor manufacturing, lithography plays a fundamental role in printing design patterns on silicon. However, the growing complexity and variation of the manufacturing process have tremendously increased the lithography modeling and simulation cost. Both the role and the cost of mask optimization – now indispensable in the design process – have increased. Parallel to these developments are the recent advancements in machine learning which have provided a far-reaching data-driven perspective for problem solving. In this talk, we shed light on the recent deep learning based approaches that have provided a new lens to examine traditional mask optimization challenges. We present hotspot detection techniques, leveraging advanced learning paradigms, which have demonstrated unprecedented efficiency. Moreover, we demonstrate the role deep learning can play in optical proximity correction (OPC) by presenting its successful application in our full-stack mask optimization framework.